Variational Methods for NLEV Approximation Near a Bifurcation Point

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Methods for NLEV Approximation Near a Bifurcation Point

We review somemore and less recent results concerning bounds on nonlinear eigenvalues NLEV for gradient operators. In particular, we discuss the asymptotic behaviour of NLEV as the norm of the eigenvector tends to zero in bifurcation problems from the line of trivial solutions, considering perturbations of linear self-adjoint operators in a Hilbert space. The proofs are based on the Lusternik-S...

متن کامل

Tutorial on variational approximation methods

Tutorial topics • A bit of history • Examples of variational methods • A brief intro to graphical models • Variational mean field theory – Accuracy of variational mean field – Structured mean field theory • Variational methods in Bayesian estimation • Convex duality and variational factorization methods – Example: variational inference and the QMR-DT Variational methods • Classical setting: " f...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

A Survey of Direct Methods for Solving Variational Problems

This study presents a comparative survey of direct methods for solving Variational Problems. Thisproblems can be used to solve various differential equations in physics and chemistry like RateEquation for a chemical reaction. There are procedures that any type of a differential equation isconvertible to a variational problem. Therefore finding the solution of a differential equation isequivalen...

متن کامل

Scaling and crossovers in activated escape near a bifurcation point.

Near a bifurcation point a system experiences a critical slowdown. This leads to scaling behavior of fluctuations. We find that a periodically driven system may display three scaling regimes and scaling crossovers near a saddle-node bifurcation where a metastable state disappears. The rate of activated escape W scales with the driving field amplitude A as ln W proportional, variant ( A(c) -A)(x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2012

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2012/102489